Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity.
نویسندگان
چکیده
Anthropogenic drivers of environmental change often have multiple effects, including changes in biodiversity, species composition, and ecosystem functioning. It remains unknown whether such shifts in biodiversity and species composition may, themselves, be major contributors to the total, long-term impacts of anthropogenic drivers on ecosystem functioning. Moreover, although numerous experiments have shown that random losses of species impact the functioning of ecosystems, human-caused losses of biodiversity are rarely random. Here we use results from long-term grassland field experiments to test for direct effects of chronic nutrient enrichment on ecosystem productivity, and for indirect effects of enrichment on productivity mediated by resultant species losses. We found that ecosystem productivity decreased through time most in plots that lost the most species. Chronic nitrogen addition also led to the nonrandom loss of initially dominant native perennial C4 grasses. This loss of dominant plant species was associated with twice as great a loss of productivity per lost species than occurred with random species loss in a nearby biodiversity experiment. Thus, although chronic nitrogen enrichment initially increased productivity, it also led to loss of plant species, including initially dominant species, which then caused substantial diminishing returns from nitrogen fertilization. In contrast, elevated CO2 did not decrease grassland plant diversity, and it consistently promoted productivity over time. Our results support the hypothesis that the long-term impacts of anthropogenic drivers of environmental change on ecosystem functioning can strongly depend on how such drivers gradually decrease biodiversity and restructure communities.
منابع مشابه
Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought.
Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated pl...
متن کاملBiodiversity and Ecosystem Functioning: Maintaining Natural Life Support Processes
Critical processes at the ecosystem level influence plant productivity, soil fertility, water quality, atmospheric chemistry, and many other local and global environmental conditions that ultimately affect human welfare. These ecosystem processes are controlled by both the diversity and identity of the plant, animal, and microbial species living within a community. Human modifications to the li...
متن کاملSpecies traits outweigh nested structure in driving the effects of realistic biodiversity loss on productivity.
While most studies of the relationship between biodiversity and ecosystem functioning have examined randomized diversity losses, several recent experiments have employed nested, realistic designs and found that realistic species losses had larger consequences than random losses for ecosystem functioning. Progressive, realistic, biodiversity losses are generally strongly nested, but this nestedn...
متن کاملDeclines in littoral species richness across both spatial and temporal nutrient gradients: a palaeolimnological study of two taxonomic groups
1. Using a palaeolimnological approach in shallow lakes, we quantified the species richness responses of diatoms and Cladocera to phosphorus enrichment. We also examined differences in species richness responses between littoral and pelagic assemblages of our focal communities. To address both spatial and temporal relationships, our study includes an analysis of both surface sediments from 40 l...
متن کاملEffects of functional diversity loss on ecosystem functions are influenced by compensation.
Understanding the impacts of biodiversity loss on ecosystem functioning and services has been a central issue in ecology. Experiments in synthetic communities suggest that biodiversity loss may erode a set of ecosystem functions, but studies in natural communities indicate that the effects of biodiversity loss are usually weak and that multiple functions can be sustained by relatively few speci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 29 شماره
صفحات -
تاریخ انتشار 2013